构成,中游为设备商和系统集成商主要负责软件的二次开发和设备制造,下游应用场景和行业广泛。工业是目前中国机器视觉行业最大的下游应用领域,工业领域的销售额占比为81.2%,其中工业行业包括
根据亿欧智库调研结果,随着行业深度及广度应用的快速发展,工业机器视觉应用领域中,目前域值得关注的四大赛道分别是3C电子、半导体、锂电、光伏。
赛道一:3C行业作为工业视觉行业应用标杆,现阶段仍有技术难点待攻克全球当前3C电子产业向发展中国家转移,伴随着3C行业高精度、换代快等特点 ,助推机器视觉技术迭代,应用场景延伸和品类拓展有望持续推动我国3C行业机器视觉渗透率提升。
从行业和产品属性综合来看,机器视觉在3C电子行业应用最为成熟,3C电子的行业属性及产品属性都决定了机器视觉在该行业的渗透率将会更高。
机器视觉在半导体行业的应用,未来有望实现机器视觉全流程技术支持。在2019年的全球半导体设备市场销售额为576亿美元,其中中国市场规模129亿美元,占比22.4%,预测未来几年中国半导体投资会跃居全球第一。
半导体产业具有集成度、精细度高的特点,是机器视觉技术最早大规模应用的领域之一。机器视觉在半导体行业中的应用涉及到半导体外观缺陷、尺寸、数量、平整度、距离、定位、校准、焊点质量、弯曲度等的检测,尤其是晶圆制作中的检测、定位、切割、封装过程全程都需应用机器视觉技术。
机器视觉广泛应用于动力电池声场过程中各关键工艺的缺陷检测、尺寸测量和定位。随着锂电行业持续高景气,新能源汽车蓬勃发展,电池厂扩产带来了机器视觉装备需求井喷。同时,锂电池工艺复杂,也使得机器视觉应用场景更加丰富。国家统计局的数据显示,2021年中国锂电池产量已经达到232.6亿只,同比增长23.4%。锂电产能的快速增加带动机器视觉高速发展,2021年市场规模达到17.7亿元,2019-2021年CAGR高达110%。
锂电在机器视觉的应用场景、制作工艺复杂,多个工序需要机器视觉检测系统。随着电芯、模组、PACK 测量要求的不断提高,被测物体条件愈发复杂,全线视觉检测已逐步成为动力电池厂商标配。
2021年,中国太阳能电池产量CAGR达35%,2021年同比增速达42%,行业迎来加速成长期。同期带动机器视觉的光伏行业应用规模由2019年2.6亿元快速提升至2021年的6.5亿元,CAGR高达58%。
在整个电池片生产过程中,来料硅片质量监控、过程电池片的缺陷监控以及成品电池片的质量检测是生产出高质量电池片的保证。电池片生产质量监控系统的每个工艺段都有提供对应的光机视觉模组(相机、光源、镜头等),可快速配置,提供高质量的视觉成像效果。
随着工业4.0的到来,工业场景对机器视觉技术的需求持续推进着工业机器视觉技术的发展。这其中包括了:3D技术要求的提高、国产化替代逐步占据主导地位、碎片化场景的一体化整合。
2D视觉发展的同时,3D技术也在崛起。从目前的趋势来看,3D机器视觉的发展势头要远大于2D。尽管当前工业机器视觉发展较为成熟,但是3D技术国内依然属于发展初期,国外的公司和产品在微观高精度检测方面较国内的领先,且占据市场的大部分份额。国内企业开始在硬件软件等方面逐渐替代国外企业。
当前机器视觉替代率达50%,但多局限于2D机器视觉领域。未来随着国产品牌协作共赢,产品功能专业、种类精细化,替代率将逐步升高。行业将趋向于专业化分工,自主化视觉平台、视觉系统与装备将协同作战,逐步超越国外品牌,成长为中国智能制造工业视觉的主力军。
随着工业自动化的规模逐渐扩大,智能制造模式下的产品多品种、小批量、个性化生产。企业开始向批量化定制生产的生产方式转变,但机器视觉技术在自动化生产线中只能对少数产品进行识别和分类,难以满足碎片化场景。为解决此情况,整合碎片化场景、打造一体化设备将会极大地促进信息技术与运营技术的快速融合。同时,打造全流程数字化闭环也将是重要举措之一。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。举报投诉
系统硬件和软件算法构成,中游为设备商和系统集成商主要负责软件的二次开发和设备制造,下游应用场景和行业广泛。
(Computer Vision) 主要强调的是让计算机具备对客观三维场景的感知、识别和理解(侧重对质的分析),例如无人驾驶、人脸识别等都可以归类为计算机
信息的自动识别、分析和处理的技术。它利用计算机处理图像、视频等数据,实现对物体形状、颜色、纹理、位置、运动等特征的提取和分析,进而实现对物体的识别、分类、跟踪、测量、检测等任务。
自动化、智能化的需求广泛提升。 亿欧智库联合阿里云加速器联合发布分析了当前相对成熟且极具发展潜力的
系统硬件和软件算法构成,中游为设备商和系统集成商主要负责软件的二次开发和设备制造,下游应用场景和行业广泛。
代替人眼来做测量和判断,通过光学的装置和非接触的传感器,自动接收和处理真实物体的图像,以获得所需信息或用于控制
计算机采用第 8 代 Intel® CoreTM 和 Celeron 处理器,可提供高计算性能和低功耗。 紧凑型
核心能力: 第一,智能识别。海量信息快速收敛,从大量信息中找到关键特征,准确度和可靠度是关键。 第二,智能测量。测量是
核心能力: 第一,智能识别。海量信息快速收敛,从大量信息中找到关键特征,准确度和可靠度是关键。 第二,智能测量。测量是
自动化系统的灵魂之窗,从物件/条码辨识、产品检测、外观尺寸量测到机械手臂/传动设备定位,都是
大规模集成电路日益普及的带动下,行业内对产量的要求和质量的苛求日益剧增。在需要减少生产力成本的前提下,
日本的安川电机(YASKAWA)、发那科(fanuc)、德国的库卡(kuka)、瑞士的ABB
- 上一篇: 路德环境:受部分设备故障影响古蔺工厂9月份产量略降
- 下一篇: 儿童禁用!倍他司汀制剂说明书修订